

Detection of Network Flow Timestamp Reliability

Martin Žádník, Erik Šabík, Václav Bartoš

Intro

- Flow monitoring
 - Network visibility
 - Many applications

Timestamp issues

- Flow measurement issues
 - Measurement artifacts in netflow data
 - Uncovering artifacts of flow measurement tools
 - One-way delay measurement based on flow data: Quantification and compensation of errors by exporter profiling

Timestamp issues

 Peeling away timing error in NetFlow data. Timestamp errors by design.

Timestamp issues

- Buffers
- Packet sampling
- Timestamp representation
- Deduplication

Detection

 Goal: Estimate the number of flow records with suspicious timestamps

- Input: flow records
- Output: percentage of reliable timestamps

Mismatch between timestamps and port numbers

Treq < Tresp when ReqDstPort is well known

- Only subset of flows may be used for timestamp evaluation – T
 - Request and response flows
 - TCP and SYN flags set in both directions
 - Timestamps are not equal

Detection

- Only subset of flows may be used for port heuristic – P
 - TCP or UDP
 - Port < 1024

Estimation

 Timestamp reliability estimate e is correlation of T and P in overlap

Estimation

- If e is 100% then both heuristics are inline and timestamps of other flows (such as UDP) are deemed correct
- If e is close to 50% then timestamps are deemed not reliable
- If e drops to 0% then negative correlation

 Corner condition the overlap should contain at least 5% of all flows

Data traces

• 3 data traces

	Flows [mil.]	Packets [mil.]	Bytes [bil.]	$ T_{equal} $	e
data set A - Aconet				0.02%	
data set B - VUT	190	7595	6668	0.04%	54%
data set C - Mawi	8	58	27	0.7%	89%

Evaluation

Swap timestamps of flows

Evaluation

Equalize timestamps that are closer than

Evaluation

Summary

- Estimation e reflects reliability of timestamps well
- Let's utilize e for driving bi flow orientation

Biflow algorithm

- Utilize timestamps whenever
 - timestamps can be utilized TREE timestamps are reliable Flow pair? Single Bi Time. Reliable? e > 80% & (TCP SYN | !TCP < 180s)Ports available? Timestamp) unknown Port

Results

Flow type	Classified	Flows	PORT	TREE
	by	[mil]		
Single flow	port unknown	134	60%	60%
	unknown	104	40%	40%
Bi. flow	port		88%	39%
	timestamp	132	0%	57%
	unknown	102	12%	4%
Bi. flow	errors		8%	0%

Swap timestamps, observe orientation

		A_{p_w}						
	A	0.5	0.2	0.1	0.05	0.02	0.01	
port	39%[t]	88%[p]	88%[p]	39%[t]	39%[t]	39%[t]	39%[t]	
timestamp	57%[t]	0%[p]	0%[p]	57%[t]	57%[t]	57%[t]	57%[t]	
unknown	$4\%[\mathrm{t}]$	12%[p]	12%[p]	4%[t]	4%[t]	4%[t]	$4\%[\mathrm{t}]$	
errors	0%[t]	8%[p] 29%[t]	8%[p] 12%[t]	6%[t]	3%[t]	1%[t]	1%[t]	

Conclusion

- For each flow exporter decide if timestamps are reliable
- Self-adapt timestamp utilization based on reliability
- Future work
 - Write NfSen patch